Switches for household and similar fixed-electrical installations –
Part 1: General requirements
Table 6 – Composition of conductors

Table 7 – Relationship between rated currents and connectable cross-sectional areas of copper conductors for screwless terminals

Table 8 – Test current for the verification of electrical and thermal stresses in normal use of screwless terminals

Table 9 – Cross-sectional areas of rigid copper conductors for deflection test of screwless terminals

Table 10 – Deflection test forces

Table 11 – Forces to be applied to covers, cover-plates or actuating members whose fixing is not dependent on screws

Table 12 – External cable diameter limits for surface type switches

Table 12a – Limits of external dimensions of flexible cables

Table 13 – Points of application of the test voltage for the verification of insulation resistance

Table 14 – Test voltage, points of application and minimum values of insulating resistance for the verification of dielectric strength

Table 15 – Temperature-rise test currents and cross-sectional areas of copper conductors

Table 16 – Fractions of total number of operations

Table 17 – Number of operations for normal operation test

Table 18 – Height of fall for impact test

Table 19 – Torque for the verification of the mechanical strength of glands

Table 20 – Creepage distances, clearances and distances through insulating sealing compound

Figure 1 – Pillar terminals

Figure 2 – Screw terminals and stud terminals

Figure 3 – Saddle terminals

Figure 4 – Lug terminals

Figure 5 – Mantle terminals

Figure 6 – Thread-forming screw

Figure 7 – Thread-cutting screw

Figure 8 – Classification according to connections

Figure 9 – Void

Figure 10 – Test apparatus for checking damage to conductors

Figure 11a – Principle of the test apparatus for deflecting test on screwless terminal

Figure 11b – Example of test arrangement to measure the voltage drop during deflecting test on screwless terminal

Figure 12 – Apparatus for making and breaking capacity and normal operation tests

Figure 13 – Circuit diagrams for making and breaking capacity and normal operation

Figure 14 – Circuit diagrams for testing switches for use on fluorescent lamp loads

Figure 15 – Impact test apparatus
Figure 16 – Pendulum impact test apparatus (striking element) ...167
Figure 17 – Mounting support for sample ...169
Figure 18 – Mounting block for flush-type switches ..169
Figure 19 – Arrangement for test on cover-plates ..171
Figure 20 – Gauge (thickness: about 2 mm) for the verification of the outline of covers,
cover-plates or actuating members ..171
Figure 21 – Example of application of the gauge of figure 20 on covers fixed without
screws on a mounting surface or supporting surface ..173
Figure 22 – Examples of applications of the gauge of figure 20 in according with the
requirements of 20.7 ...175
Figure 23 – Gauge for verification of grooves, holes and reverse tapers...............................177
Figure 24 – Sketch showing the direction of application of the gauge of figure 23177
Figure 25 – Ball-pressure apparatus ..179
Figure 26 – Diagrammatic representation (24.1.1) ...179
Figure 27 – Test wall in accordance with the requirements of 15.2.2181
INTERNATIONAL ELECTROTECHNICAL COMMISSION

SWITCHES FOR HOUSEHOLD AND SIMILAR FIXED-ELECTRICAL INSTALLATIONS –

Part 1: General requirements

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”)

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60669-1 has been prepared by subcommittee 23B: Plugs, socket-outlets and switches, of IEC technical committee 23: Electrical accessories.

The technical content is therefore identical to the base edition and its amendments and has been prepared for user convenience.

It bears the edition number 3.2.

A vertical line in the margin shows where the base publication has been modified by amendments 1 and 2.

Annexes A and B form an integral part of this standard.
In this standard the following print types are used:

- requirements proper: in roman type;
- test specifications: *italic* type;
- explanatory matter: in smaller roman type.

The committee has decided that the contents of the base publication and its amendments will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
SWITCHES FOR HOUSEHOLD AND SIMILAR FIXED-ELECTRICAL INSTALLATIONS –

Part 1: General requirements

1 Scope

This part of IEC 60669 applies to manually operated general purpose switches, for a.c. only with a rated voltage not exceeding 440 V and a rated current not exceeding 63 A, intended for household and similar fixed electrical installations, either indoors or outdoors.

For switches provided with screwless terminals the rated current is limited to 16 A.

Switches covered by this standard are intended for the control in normal use of:

- a circuit for a tungsten filament lamp load; or
- a circuit for a fluorescent lamp load (including electronic ballast); or
- a circuit for a substantially resistive load with a power factor not less than 0,95; or
- a monophase circuit for motor load with a rated current up to 10 A and a power factor not less than 0,6; or
- a combination of these.

NOTE 1 An extension of the scope to switches for rated voltages higher than 440 V is under consideration.

NOTE 2 An increase of the rated current of 10 A for motor load is under consideration.

NOTE 3 For the time being, switches with a rated current more than 10 A are considered as a 10 A current for motor load switch.

The standard also applies to boxes for switches, with the exception of mounting boxes for flush type switches.

NOTE 4 General requirements for boxes for flush-type switches are given in IEC 60670.

It also applies to switches such as:

- switches incorporating pilot lights;
- electromagnetic remote control switches (particular requirements are given in the relevant part 2);
- switches incorporating a time-delay device (particular requirements are given in the relevant part 2);
- combinations of switches and other functions (with the exception of switches combined with fuses);
- electronic switches (particular requirements are given in the relevant part 2);
- switches having facilities for the outlet and retention of flexible cables (see annex B);
- isolating switches (particular requirements are given in the relevant Part 2).

NOTE 5 The minimum length of the flexible cable used with these switches may be governed by National Wiring Rules.
Switches complying with this standard are suitable for use at ambient temperatures not normally exceeding 25 °C, but occasionally reaching 35 °C.

NOTE 6 Switches complying with this standard are suitable only for incorporation in equipment in such a way and in such a place that it is unlikely that the surrounding ambient temperature exceeds 35 °C.

In locations where special conditions prevail, such as in ships, vehicles and the like and in hazardous locations, for example where explosions are liable to occur, special constructions may be required.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60112: 1979, *Method for determining the comparative and the proof tracking indices of solid insulating materials under moist conditions*

IEC 60212: 1971, *Standard conditions for use prior to and during the testing of solid electrical insulation materials*

IEC 60227-1: 1993, *Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V – Part 1: General requirements*

IEC 60227-3: 1993, *Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V – Part 3: Non-sheathed cables for fixed wiring*

IEC 60227-4: 1992, *Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V – Part 4: Sheathed cables for fixed wiring*

IEC 60227-5 1979, *Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V – Part 5: Flexible cables (cords)*

Amendment 1 (1987)

IEC 60245-1: 1994, *Rubber insulated cables – Rated voltages up to and including 450/750 V – Part 1: General requirements*

IEC 60245-4: 1994, *Rubber insulated cables – Rated voltages up to and including 450/750 V – Part 4: Cords and flexible cables*

IEC 60417: 1973, *Graphical symbols for use on equipment. Index, survey and compilation of the single sheets*

IEC 60529: 1989, *Degrees of protection provided by enclosures (IP Code)*

IEC 60670: 1989, *General requirements for enclosures for accessories for household and similar fixed-electrical installations*

IEC 60998: _Connecting devices for low voltage circuits for household and similar purposes_

IEC 60998-1: 1990, _Connecting devices for low voltage circuits for household and similar purposes – Part 1: General requirements_

IEC 60998-2-1: 1990, _Connecting devices for low voltage circuits for household and similar purposes – Part 2-1: Particular requirements for connecting devices as separate entities with screw-type clamping units_

IEC 60998-2-2: 1991, _Connecting devices for low voltage circuits for household and similar purposes – Part 2-2: Particular requirements for connecting devices as separate entities with screwless-type clamping units_

IEC 60999-1: 1990, _Connecting devices – Safety requirements for screw type and screwless-type clamping units for electrical copper conductors – Part 1: General requirements and particular requirements for conductors from 0,5 mm² up to 35 mm² (included)_.

ISO 1456: 1988, _Metallic coatings – Electrodeposited coatings of nickel plus chromium and of copper plus nickel plus chromium_

ISO 2081: 1986, _Metallic coatings – Electroplated coatings of zinc on iron or steel_

3 Definitions

For the purpose of this part of IEC 60669 the following definitions apply.

Where the terms “voltage” and “current” are used, they imply r.m.s. values unless otherwise specified.

3.1 _switch_
device designed to make or break the current in one or more electric circuits

3.1.1 _push-button switch_
control switch having one actuator intended to be operated by force exerted by a part of human body, usually the finger or the palm of the hand, having stored energy return, for instance a spring

3.1.2 _momentary contact switch_
switching device which returns automatically to the initial state after operation

NOTE Momentary contact switches are intended to operate bells, electromagnetic remote control switches or time-delay switches.

3.1.3 _momentary push-button switch_
push-button switch which returns automatically to the initial state after operation