ASTM E2001-18 - 1.11.2018
 
Significance and Use

5.1 The primary advantage of RUS is its ability of making numerous measurements in a single test. In addition, it can examine rough ground parts. It requires little sample preparation, no couplants, and generally will work with soiled items; however, it has limited capability with soft materials. Soft metals, polymers, rubbers, and wood parts must be considered on a case by case basis.

 
1. Scope

1.1 This guide describes a procedure for detecting defects in metallic and non-metallic parts using the resonant ultrasound spectroscopy method. The procedure is intended for use with instruments capable of exciting and recording whole body resonant states within parts which exhibit acoustical or ultrasonic ringing. It is used to distinguish acceptable parts from those containing defects, such as cracks, voids, chips, density defects, tempering changes, and dimensional variations that are closely correlated with the parts' mechanical system dynamic response.

1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

 
2. Referenced Documents

E1316-24

Standard Terminology for Nondestructive Examinations

E1876-22

Standard Test Method for Dynamic Young´s Modulus, Shear Modulus, and Poisson´s Ratio by Impulse Excitation of Vibration

E2534-20

Standard Practice for Targeted Defect Detection Using Process Compensated Resonance Testing Via Swept Sine Input for Metallic and Non-Metallic Parts