ASTM E2215-18 - 1.8.2018
 
Significance and Use

4.1 Neutron radiation effects are considered in the design of light-water moderated nuclear power reactors. Changes in system operating parameters may be made throughout the service life of the reactor to account for these effects. A surveillance program is used to measure changes in the properties of actual vessel materials due to the irradiation environment. This practice describes the criteria that should be considered in evaluating surveillance program test capsules.

4.2 Prior to the first issue date of this standard, the design of surveillance programs and the testing of surveillance capsules were both covered in a single standard, Practice E185. Between its provisional adoption in 1961 and its replacement linked to this standard, Practice E185 was revised many times (1966, 1970, 1973, 1979, 1982, 1993 and 1998). Therefore, capsules from surveillance programs that were designed and implemented under early versions of the standard were often tested after substantial changes to the standard had been adopted. For clarity, the standard practice for surveillance programs has been divided into the new Practice E185 that covers the design of new surveillance programs and this standard practice that covers the testing and evaluation of surveillance capsules. Modifications to the standard test program and supplemental tests are described in Guide E636.

4.3 This practice is intended to cover testing and evaluation of all light-water moderated reactor pressure vessel surveillance capsules. The practice is applicable to testing of capsules from surveillance programs designed and implemented under all previous versions of Practice E185.

4.4 The radiation-induced changes in the properties of the reactor pressure vessel are generally monitored by measuring the index temperatures, the upper-shelf energy and the tensile properties of specimens from the surveillance program capsules. The significance of these radiation-induced changes is described in Practice E185.

4.5 Alternative methods exist for testing surveillance capsule materials. Some supplemental and alternative testing methods are available as indicated in Guide E636. Direct measurement of the fracture toughness is also feasible using the To Reference Temperature method defined in Test Method E1921 or J-integral techniques defined in Test Method E1820. Additionally, hardness testing can be used to supplement standard methods as a means of monitoring the irradiation response of the materials.

4.6 Practice E853 describes a methodology that may be used in the analysis and interpretation of neutron dosimetry data and the determination of neutron fluence. Regulators or other sources may describe different methods.

4.7 Guide E900 describes a method for predicting the TTS. Regulators or other sources may describe different methods for predicting TTS.

4.8 Guide E509 provides direction for development of a procedure for conducting an in-service thermal anneal of a light-water cooled nuclear reactor vessel and demonstrating the effectiveness of the procedure including a post-annealing vessel radiation surveillance program.

 
1. Scope

1.1 This practice covers the evaluation of test specimens and dosimetry from light water moderated nuclear power reactor pressure vessel surveillance capsules.

1.2 Additionally, this practice provides guidance on reassessing withdrawal schedule for design life and operation beyond design life.

1.3 This practice is one of a series of standard practices that outline the surveillance program required for nuclear reactor pressure vessels. The surveillance program monitors the irradiation-induced changes in the ferritic steels that comprise the beltline of a light-water moderated nuclear reactor pressure vessel.

1.4 This practice along with its companion surveillance program practice, Practice E185, is intended for application in monitoring the properties of beltline materials in any light-water moderated nuclear reactor.2

1.5 Modifications to the standard test program and supplemental tests are described in Guide E636.

1.6 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

 
2. Referenced Documents

E8/E8M-24

Standard Test Methods for Tension Testing of Metallic Materials

E636-20

Standard Guide for Conducting Supplemental Surveillance Tests for Nuclear Power Reactor Vessels

E509-03

Standard Guide for In-Service Annealing of Light-Water Cooled Nuclear Reactor Vessels

E208-20e1

Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels (Includes all amendments and changes 2/9/2023).

Boiler and Pressure Vessel Code, Section XI

Boiler and Pressure Vessel Code, Section III

Subarticle NB-2000, Rules for Construction of Nuclear Facility Components, Class 1 Components, Materials

E1214-11(2023)

Standard Guide for Use of Melt Wire Temperature Monitors for Reactor Vessel Surveillance

E900-21

Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials

E853-23

Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Neutron Exposure Results

E844-18

Standard Guide for Sensor Set Design and Irradiation for Reactor Surveillance

E1921-23b

Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range (Includes all amendments and changes 3/6/2024).

E1820-23b

Standard Test Method for Measurement of Fracture Toughness (Includes all amendments and changes 7/14/2023).

A370-23

Standard Test Methods and Definitions for Mechanical Testing of Steel Products

E21-20

Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials

E23-23a

Standard Test Methods for Notched Bar Impact Testing of Metallic Materials (Includes all amendments and changes 4/13/2023).

E170-23

Standard Terminology Relating to Radiation Measurements and Dosimetry

E1253-21

Standard Guide for Reconstitution of Charpy-Sized Specimens

E693-23

Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA)

E185-21

Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels